Впервые были обнаружены «призрачные» частицы, порожденные при столкновениях в Большом Адроном Коллайдере

Датчик эксперимента FASER

Ученые-физики впервые в истории зарегистрировали «призрачные» частицы нейтрино, порожденные при столкновениях внутри Большого Адронного Коллайдера (БАК), самого большого и мощного ускорителя частиц на сегодняшний день. Контрольные сигналы, свидетельствующие о наличии этих частиц, были зарегистрированы датчиками эксперимента FASER. А дальнейшее изучение событий и собранных данных позволит ученым лучше понять некоторые аспекты физики элементарных частиц.

Напомним нашим читателям, что нейтрино — это очень легкие элементарные частицы, не имеющие электрического заряда, которые крайне редко взаимодействуют с частицами обычной материи. Редкость взаимодействий делает процесс обнаружения нейтрино весьма сложным даже при условии, что такие частицы являются весьма распространенными и их огромное количество, исчисляющееся миллиардами, проходит через тело человека каждую секунду. Именно из-за такой неуловимой природы нейтрино называют призрачными частицами.

Частицы нейтрино вырабатываются в огромных количествах в недрах звезд, в квазарах, при взрывах сверхновых, при распаде радиоактивных элементов и даже при взаимодействии космических лучей с атомами верхних слоев земной атмосферы. Также частицы нейтрино, согласно теориям, должны вырабатываться в достаточно больших количествах в таких ускорителях, как БАК, но для их обнаружения требуется установка соответствующих датчиков и инструментов.

И в 2018 году рядом с коллайдером был установлен «правильный» инструмент FASER, предназначенный именно для обнаружения частиц нейтрино. За все время периода работы коллайдера датчики этого инструмента зарегистрировали шесть случаев прохождения через них частиц нейтрино.

Оборудование и датчики инструмента FASER расположены на удалении 480 метров от точки столкновения лучей протонов в туннеле коллайдера. Датчики состоят из свинцовых и вольфрамовых пластин, между которыми находится слой специальной эмульсии. Когда частицы нейтрино сталкиваются с ядрами атомов в пластинах из плотного металла, возникает поток вторичных частиц, которые движутся сквозь слой эмульсии и оставляют за собой характерные следы. И за все время при помощи эмульсии было зарегистрировано шесть соответствующих следов нейтрино.

Собрав всю необходимую информацию, группа эксперимента FASER готовит теперь новый датчик нейтрино, более массивный и гораздо более чувствительный. Этот новый датчик, FASERnu, будет весить 1090 килограмм, для сравнения, вес первого датчика составляет всего 29 килограмм. А более высокая чувствительность позволит не только регистрировать большее количество частиц, но и идентифицировать типы нейтрино и антинейтрино, которые в науке называют термином «аромат».

Ученые рассчитывают, что при помощи нового датчика им удастся зарегистрировать порядка 10 тысяч частиц нейтрино во время очередного периода работы коллайдера, который начнется в 2022 году. «Мы надеемся, что нам удастся поймать самые высокоэнергетические нейтрино, которые были порождены в недрах источника, созданного человеком, другими словами, частицы нейтрино искусственного происхождения» — пишут исследователи.

Share Button

Материалы по теме:

Новое тонкопленочное нанопокрытие может превратить любые очки в прибор ночного видения
Ученые из Австралийского Национального университета (Australian National University, ANU) разработали новую и первую в своем роде технологию ночного видения. Эта технология воплощена в виде ...
Ученые получили еще одну форму воды, «горячий черный» лед, который может существовать в недрах гигантских планет
В окружающем нас мире вода может находиться в гораздо большеv количестве различных форм, чем привыкло считать большинство людей. И недавно ученым из Национальной лаборатории ...
Разработана технология, позволяющая сохранить стабильность оптических кубитов при комнатной температуре
В квантовых технологиях достаточно широко используются оптические квантовые биты, кубиты, на основе единичных фотонов света. Такие фотоны достаточно легко получить в нужных количествах, ими ...
Камера, способная делать 12.5 миллиардов кадров в секунду, дала возможность ученым изучить все тонкости процесса горения
Ученые-физики из университета Гетеборга, работая с коллегами из Германии и США, разработали новую сверхскоростную лазерную камеру, способную снимать видео со скоростью 12.5 миллиардов кадров ...
Использование самой холодной материи во Вселенной позволило измерить самые слабые магнитные поля
На свете уже давно существуют такие устройства, как магнетометры, которые измеряют направление, силу и изменения магнитных полей в контролируемой области пространства. Магнитометры используются во ...
You can skip to the end and leave a response. Pinging is currently not allowed.

Leave a Reply

Яндекс.Метрика