Двухфотонный метод позволил увеличить точность наноразмерных измерений в сто раз

Метод двухфотонного измерения

Точность измерения размеров наноструктур была увеличена минимум в сотню раз, благодаря работе исследователей из Уорикского университета, центра QuantIC и университета Глазго. Новый метод, использующий пары фотонов, фундаментальных частичек света, позволяет измерить толщину объектов, в 100 тысяч раз меньших, чем диаметр человеческого волоса, с точностью, в 100 раз превышающей точность любых других методов.

В новом методе измерений используется источник, излучающий пары фотонов, практически идентичные по всем параметрам. Эти фотоны разделяются при помощи компонента, называемого светорасщепителем, для проведения одного цикла измерений используется порядка 30 тысяч пар фотонов, а для проведения всего измерения в целом — порядка 500 миллиардов фотонов.

Один из фотонов, фотон А, остается внутри светорасщепителем, а второй фотон, фотон Б, проходит сквозь объект, из-за чего его скорость несколько замедляется. После этого, фотон Б снова возвращается в светорасщепитель и покидает его пределы вместе с фотоном А. Измерение задержки между выходом из расщепителя фотонов А и Б дает значение толщины объекта, сквозь который прошел фотон Б. И точность таких измерений как минимум в 100 раз превышает точность подобных измерений, проведенных при помощи только одного фотона.

Структура экспериментальной установки

Отметим, что при помощи данного метода можно измерить объекты, изготовленные из прозрачного материала. Но и этого вполне достаточно для проведения исследований структуры и свойств клеточных мембран, молекул ДНК. Помимо этого, новый метод измерения можно использовать для контроля качества при производстве графена и других условно двухмерных материалов.

«Наиболее интересным в данном достижении является то, что измерения проводятся не при помощи каких-то нестабильных квантовых технологий, а при помощи датчиков, основанных на проверенных временем обычных физических принципах» — рассказывает доктор Джордж Ни (Dr George Knee), разработавший теоретическую базу эксперимента, — «А более высокая точность измерений была получена нами за счет особой настройки интерферометра и его постоянной перекалибровке, что позволило устранить медленный временной и температурный дрейф».

Share Button

Материалы по теме:

Ученые обнаружили дыры в свете, «завязанном в узлы»
Группа ученых из университетов Бристоля и Бирмингема, занимающаяся вопросами теоретической физики, нашла новый способ изучения распространения света в пространстве, "завязывая" из этого света своего ...
В рамках эксперимента Cold Atom Laboratory на борту космической станции было создано самое холодное место в космосе
Представители американского космического агентства НАСА сообщили, что ученые-астронавты, используя установку Cold Atom Laboratory (CAL), доставленную на борт Международной космической станции в мае этого года, ...
Большой Адронный Коллайдер впервые начал разгонять ядра атомов вместе с окружающими их электронами
Главной задачей, для которой создавался Большой Адронный Коллайдер, самый мощный ускоритель частиц на сегодняшний день, является столкновения субатомных частиц, разогнанных до столь высоких энергий, ...
Самые быстро вращающиеся частицы на свете помогают ученым проверить пределы фундаментальной физики
Ученые из университета Пурду (Purdue University) создали систему из наночастиц, которые вращаются со скоростью порядка миллиарда оборотов в секунду, что является на сегодняшний день ...
Ученые впервые обнаружили магнитные монополи в среде холодного квантового газа
Известно, что магниты, имеющие форму шара, прямоугольника или подковы, всегда имеют по два магнитных полюса. И если разделить магнит на две части, вы получите ...
You can skip to the end and leave a response. Pinging is currently not allowed.

Leave a Reply

Яндекс.Метрика